

Government of India Ministry of Agriculture & Farmers Welfare Department of Agriculture & Farmers Welfare Directorate of Plant Protection, Quarantine & Storage Central Insecticides Board & Registration Committee N.H. IV, Faridabad-121 001 (Haryana)

Major Uses of Pesticides

(Registered under the Insecticides Act, 1968)

(UPTO - 31/03/2024)

(Based on certificate issued)

Disclaimer: The document has been compiled on the basis of available information for guidance and not for legal purposes.

PLANT GROWTH REGULATORS (PGR)

Plant Growth Regulators (PGR): (Page No. 2 to 14)

APPROVED USES OF REGISTERED PGR

PLANT GROWTH REGULATORS (PGR)

Name of PGR	Time of application / purpose	Dosa	ge /ha	Dilution In Water (Litres) /	Waiting period /	
& approved Crops		a.i. Formu- (ppm/gm/ lation %) (ml/gm/I tr/kg/%)		Preparation of solution	PHI between last applicatio n & harvest (days)	
Alpha Naphthyl	Acetic Acid 4.5% SL (Na salt)					
Tomato	At the time of flowering two spray.	45ppm	-	-	-	
Chillies	1 st spray during flowering & 2 nd spray 20 -30 days later.	10ppm	-	-	-	
Mango	1 st spray when tender fruits one of pea size. 2 nd spray when fruits one of marble size (about 2 cm diameter)	20ppm	-	2 ml in 4.5litre. 20 ml in 4.5 ltrs.	-	
	<u>To control Mango</u> <u>malformulation</u> - Before fruit bud differentiations approx.3 months before flowering	200ppm	-	20 mm m 4.5 ms.	-	
Grapes	 (a)To increase size & weight of berries Ist sprays at pruning time 2nd spray when flowering shoot appear 	10ppm	-	2 ml in 49 ltrs.	-	
	(b)To control berry drop (spray on matured grape bunches) 10- 15 days before harvesting.	100ppm	-	20 ml. in 49 ltrs.	-	

(a)To induce flowering and	10ppm (In		1 ml in 4.5 ltrs	_
uniform growth	dry		(pour 30-50 ml	
<u>umorm growtn</u>	5		` 1	
		-		
	U		plant)	
			10 1: 451	
	be used)			
			A .	-
(b)To increase fruit size				
(b) to increase truit size.	199ppm	-		
			harvest.)	
				-
	100ppm	-		
	10-20 ppm.		1000 ltr.	
-		ml		
from square formation stage				
oride 50% SL				
	20.40	40.00	TT' 1 T 7 1	
* · · ·	U		-	-
flowering (one spray)	a.ı/ha	ml/ha		
· ·		150 ml/ha	High volume	-
flowering (one spray)	gm/ha		375-600	
			575-000	
Seed soaking for 24 hours	50ppm	100ppm	1ml/10L water	-
		**		
	100ppm	200ppm	2.0ml/ 10 L	
	°PP	PP		
3-5 leaf stage after April pruning	500 g	1000ml		
	a.i./ha			
5-7 leaf stage after April Pruning				
		1	1	1
2.5 loof store offer Ostalian		20001	10001	01
3-5 leaf stage after October	1000	2000 ml	1000L	91
3-5 leaf stage after October Pruning	1000 g a.i./ha	2000 ml	1000L	91
	 (b)To increase fruit size. I To delay maturity - Two weeks before harvest. To prevent shedding of flower squares & bolls (3 sprays at 15 days interval from square formation stage oride 50% SL Square formation of early flowering (one spray) Square formation of early flowering (one spray) Seed soaking for 24 hours (before sowing) Dipping of cut pieces for 10 minutes 	weather half strength solution i.e. 5 ppm may be used)(b)To increase fruit size.199ppm(b)To increase fruit size.199ppm100ppm100ppmTo delay maturity - Two weeks before harvest.100ppmTo prevent shedding of flower 	weather half strength solution i.e. 5 ppm may be used)-(b)To increase fruit size.199ppm-I To delay maturity - Two weeks before harvest.100ppm-To prevent shedding of flower squares & bolls (3 sprays at 15 days interval from square formation stage10-20 ppm. 222-444 ml222-444 mloride 50% SL20-40 gm a.i/ha40-80 ml/haSquare formation of early flowering (one spray)20-40 gm a.i/ha40-80 ml/haSquare formation of early flowering (one spray)75 a.i. gm/ha150 ml/haSeed soaking for 24 hours (before sowing)50ppm100ppmDipping of cut pieces for 10 minutes100ppm200ppm	weather half strength solution i.e. 5 ppm may be used)of solution in to the head of each plant)(b)To increase fruit size.5 ppm may be used)-10 ml in 4.5 ltrs. (spray to wet the whole plant) 10 ml in 4.5 ltrs. (spray to wet the whole fruit 2 weeks before harvest.)I To delay maturity - Two weeks before harvest.100ppm-To prevent shedding of flower squares & bolls (3 sprays at 15 days interval from square formation of early flowering (one spray)10-20 ppm. 222-444 ml1000 ltr. mlSquare formation of early flowering (one spray)20-40 gm a.i/ha40-80 ml/haHigh Volume 375-600 Low volume 125-187Square formation of early flowering (one spray)75 a.i. spray150 ml/ha streign/haHigh volume 375-600Seed soaking for 24 hours (before sowing)50ppm100ppm1ml/ 10L water waterDipping of cut pieces for 10 minutes100ppm200ppm2.0ml/ 10 L water

		250 g a.i./ha	500ml		
Chlorpropha	m 50% HN				
Potato	Antisprouting agent for stocked potatoes under cold storage condition Temp= $10\pm2^{\circ}C$ R.H.= $90\pm5\%$	18-20 gm/MT	36-40 ml/MT	Formulati on is to be applied as such with fogging applicator	20
Chlorproph	am 55.37% w/w (624 g/l) HN (Gro	-Stop Elect	ro)	upphenoi	1
Potato	Anti-sprouting agent for stocked potatoes under cold storage condition Temp= 10±2°C R.H.= 90±5%	18-20 gm/MT	29-32 ml/MT	Formulati on is to be applied as such with fogging applicator	20
Ethephon 10 ^o	% Paste				
Rubber	For renewed bark 4 times bark swabbing. During March, August, September & November below the tapping panel after 4 cm scrap of the bark /above the tapping panel/on the tapping cut after removing the lace.	10%	50 ml. formulatio n per tree directly used without dilution.	-	-
Ethephon 39	% SL	1		1	
Mango	 a)For breaking alternate bearing tendencies b)For Flower induction in juvenile mango c)Post-harvest treatment (For Uniform Ripening) 	200 ppm 1000 ppm 500 ppm	770-1025 3846- 5128 1923- 2564	1500-2000 1500-2000 1500-2000	5 ml in 10 lit of water 26 ml in 10 lit of water 13 ml in 10 lit of water
Pineapple	For flower induction	100 ppm	385-513	1500-2000	2.5 ml in 10 lit of water
Coffee (Arabica)	For uniform ripening of berries, One spray at fly pricking stage, when 10-15% berries are ripened.	192 ppm	738-985	1500-2000	5 ml in 10 lit of water
Coffee (Robusta)	For uniform ripening of berries, one spray at fly pricking stage, when 10-15% berries are ripened.	96 ppm	215-287	1500-2000	2.5 ml in 10 lit of water

Tomato	Post-harvest treatment	2500 ppm	-		65 ml in 10 lit of
Tomato	(for Uniform Ripening)	2300 ppm	-	-	water
Rubber	Yielding rubber latex	1000 ppm	-	-	26 ml in 10 lit of water
Pomegranate	Defoliation for better flowering and fruit yield	390-487.5 g	1000- 1250 ml	500	135 days (2-2.5 ml/lit water)
Grape	Defoliation for better flowering and fruit yield	487.5-682.5 g	1250- 1750	750	2.5 ml in 1 lit of water
Forchlorfenuro	on 0.1% L (w/v)				
Grapes	Two dipping applications. 1 st When size of berry is 3-4 mm diameter and 2 nd When size of berry is 6-7 mm diameter,	2ppm.	1 ltrs.	500	60 days
Forchlorfenuro	on 0.12% EC w/w				
Grapes	To enhance the fruit size in seedless grapes single directed spray on berries at 4-6 mm berry size	3 ppm	1.5 liter	500 liter/ha.	20
Pigeon pea (Tur)	Single directed spray at the time of 100% flowering	2.5ppm	1.125 Litres/ha	Spray Volume- 450 l/ha. Mix 250 ml of Sitofex in 100 l water	30 days
Gibberellic Aci	d Technical (90% w/w)				
Grape fruit	 a) At full bloom (for fruit set)-single spray b) Ist week of May (For June fruit drop) –single spray c) Ist week of October (For preharvest drop)-single spray 	500-1000 ppm	-	-	-
Sweet cherry	When more than 60% buds opened fully.	40-80ppm	-	-	-
Grapes	Two directed spray I^{st} at full bloom & 2^{nd} at fruit set stages.	100ppm.	-	-	-
Grape	Two blanket spray at I st full	15-60ppm	-	-	-
-	- · ·				1

(Seedless)	bloom & 2 nd at post bloom stage.				
Brinjal	a) seed treatment (dipping)	10ppm	-	-	-
	b) When 4 weeks old -weekly spray	50ppm	-	-	-
Gibberellic Acid	0.001% L	I			
	To increase the yield and quality of the crop produce				
Paddy	Short duration varieties 20- 25DAT Medium duration varieties 30-35 DAT Long duration varieties 40-45 DAT	0.018gm	180 ml	450-500	-
Sugarcane	a) First spray 40-45 DAP	0.018gm	180 ml	450-500	-
(Planted crops)	b) Second spray 70-80 DAS				
Cotton	a) First spray 40-45 DAPb) Second spray: At the time of ball formation	0.018gm	180 ml	450-500	-
Groundnut	a) First spray at flowering (30-35 AS)b) Second spray at the time of flowering	0.018gm	180 ml	450-500	-
Banana	a) First spray 3 rd month b) Second spray 5 th month Third spray at the time of fruit formation	0.027gm	270 ml.	450-500	-
Tomato / Potato / Cabbage / Cauliflower	a) First spray 45 DAS b) Second spray 65 DAS	0.018gm	180 ml.	450-500	-
Grapes	 a) First spray 30-35 days after pruning b) Second during the match head stage 	0.018gm	180 ml.	450-500	-

Brinjal, Bhindi	a) First spray 34 DAPb) Second spray 70 DAPc)Third spray 105 DAP	0.045 gm	450 ml.	450-500	-
Tea	Five spray at monthly interval.	-	270ml	450-500	-
Mulberry	First spray: 15-20 days after harvest	0.045	450	450-500	
Gibberellic Acid	l 0.1% GR			•	
Rice	Broadcast (Manual by hand with rubber gloves or through mechanical dispenser) at 15-20 days after transplanting	12.5-15 g	12.5-15.0 kg	-	76
Gibberellic Acid	l 0.186% SP		-	•	
Cotton	to improve fiber quality one spray at square formation or early flowering stage	142ppm.	71 gm	450-500	-
Gibberellic Acid	1 40% WSG				
Grape	Pre Bloom- Elongation Fruit Setting Thinning 6-7mm berry size-enlargement	40	50	500	-
Rice	20-25 Days After Transplanting	20-25	20-62.5	500	
	At Panicle emergence	20-25	50-62.5	500	
Wheat	20-25 Days After sowing 10% ear emergence	10-15	25-37.5	500	-
Maize	Knee high stage (25-30 DAS)	20	50	500	-
Hydrogen Cyna	mide 50% SL (Import)				
Grapes	For breaking bud dormancy Single application as spray Just after pruning ,	1-1.5%	2-3%	375-500	90-120 days
Hydrogen Cyna	mide 50% SL (Indigenous manufa	cture)			
Grapes	For breaking dormancy of fruiting buds Just after pruning, single application by swabbing.	1.5%	1.5 ltrs.	Mix with 200-300 ml. of product in 10 litres of water.	120 days

Hydrogen Cya	anamide 49% AS (Import)				
Grapes	For breaking bud dormancy One directed spray, just after pruning.	1.0-1.5%	2-3%	50 ltrs.	110 days
Sugarcane	Dipping of setts	0.50	1.00%	Mix 1000 ml of the product per 100 litres of water	319 days
Mepiquat chlo	oride 5% AS				
Potato	One spray 45 DAP To restrict the excessive vegetative growth of potato and increasing its yield	62.5-75 g	1.25-1.50 ltr	500-600	60-90 days
Cotton	Single spray at flowering stage to control of excessive vegetative growth and to increase crop yield in cotton	50-62.5 g	1.00-1.25 ltr	500-600	57
Groundnut	Single spray at flowering stage to control of excessive vegetative growth and to increase crop yield in groundnut	50-62.5 g	1.00-1.25 ltr	500	60
Chickpea	Single spray at flowering stage to control of excessive vegetative growth and to increase crop yield in chickpea	62.5 g	1.25 ltr	500	56
Soybean	Single spray at flowering stage to control of excessive vegetative growth and to increase crop yield in soybean	62.5 g	1.25 ltr	500	54
Brinjal	Single spray at flowering stage to control of excessive vegetative growth and to increase crop yield in brinjal	62.5 g	1.25 ltr	500	7
Onion	Single spray at flowering stage to control of excessive	62.5 g	1.25 ltr	500	48 (bulb) 7 (green leaves)

	vegetative growth and to increase crop yield in onion				
Nitrobenzene 2	0% w/w EW				
Tomato	Plant Growth Regulator	200 gm	1000	500	Zero days
1-Methylcyclopr	opene 3.3% VP (Vapour Releasing	g Product)	1	L	
Apple fruit (Under ambient and cold condition)	Applied as soon as possible after harvest, within a maximum of 7 days after harvest on fruits kept at ambient and cold temperature away from source of external ethylene.	2.24 mg	68 mg (1000 PPB)	-	1
	3% w/w (25% w/v) SC • ZENECA Agrochemicals, Fernh	urst, Haslem	ere, Surrey, V	U K)	
Mango	To reduce the inter node length of new shoots and earlier formation of terminal bud. Favourably, influence the fruit bud production, fruit colour and harvest yield 7-15yrs old 16-25 yrs.old >25 yrs old Application after the harvest of fruits (Any time from July to Oct)	-	 15 ml. Per tree 20 ml. Per tree. 25-40 ml. Per tree (Note: If the soil is sandy the rate of application may be reduced to 75 % of the recommen 	n or apply as soil –	-
			recommen ded. For repeat use		

	ol 23% SC (W/W) / (25% W/V) rce:- PGR International Pty. Ltd., 4	Dairy road	the rate of application can be 50 to 75 % of the rate used in the 1 st year)		ia)
Mango	To reduce the inter node length of new shoots and earlier formation of terminal bud. increase fruit bud production, and improve fruit yield texture 16-25 yrs old Application after the harvest of fruits (Any time from July to Oct)	4.0 gm per tree -	tree (Note: If the soil is sandy the rate of applicatio n be reduced to 75 % of the recommen ded. For repeat use the rate of applicatio n can be 50 to 75 % of the	litres of clean water and apply to the furrow. Fill up with soil after application and irrigate once or twice	Period-NIL as the chemical is
Paclobutrazo	ol 23% SC (w/w) / (25% w/v) (Indigene	ous manufac	cture)		
Mango	To reduce the inter node length of new shoots and earlier formation of terminal bud. Favourably, influence the fruit bud production, fruit colour and harvest yield		qua clea litra in f cm cm	commended antity diluted in an water of 5 es and applied furrow 5 to 10 deep about 30 away from the nk. Fill up with	_

	7.15 11	2.17	1 7 1	1 0	
	7-15 yrs old	3.45	15 ml per tree	soil after	
				application or	
				apply as soil –	
	16-25 yrs old	4.6	20 ml per tree	collar drench.	
	>25 yrs old	5.75-	30 ml per tree		
		9.2			
	Application after the		(Note: If the		
	harvest of fruits (Any time		soil is sandy		
	from July to Oct)		the rate of		
			application		
			may be reduced		
			to 75 % of the		
			recommended.		
			For repeat use		
			the rate of		
			application can		
			be 50 to 75 %		
			of the rate used		
			in the 1 st year)		
Pomegranate	To induce	0.69	3.0 ml/tree	2L	83
ronnegranate	flowering and	g.ai./h	5.0 m//uee	Recommended as	85
	enhance yield	a			
				soil drench (single application) ring	
				adducation) ring	
1					
				form furrow to be	
				form furrow to be made at a depth of	
				form furrow to be made at a depth of 5-7 cm around	
				form furrow to be made at a depth of 5-7 cm around plants and soil	
				form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be	
				form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root	
				form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered	
				form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil.	
Apple	To induce	2.3	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as	155
Apple			10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single application)	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single application)	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single application) Treatment should	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single application) Treatment should be drenched in soil	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single application) Treatment should be drenched in soil in circular area 25	155
Apple	flowering and	g.a.i./t	10 ml/tree	form furrow to be made at a depth of 5-7 cm around plants and soil drenching to be done in active root zone and covered with soil. 5L Recommended as soil drench (single application) Treatment should be drenched in soil in circular area 25 cm away from tree	155

	To induce flowering and enhance yield	0.40 g.a. Litr wat (460 ppn	i/ re er 0 n)	2 ml/Liti (2000 pp	om)	foli app the volu spra tip	commended a ar spray (sin lication) with help of high ume knap sac ayer (at gree stage)	gle h ck	134
Cotton	To restrict vegetative growth prevent shedding of squares/bolls & enhance yield	34.: g a.i./		150ml/h	a	500) L/ha		42
Groundnut	To enhance yield by restricting vegetative growth	28.7 g a.i./		125 ml/h	na	500) L/ha		70
Paclobutrazol	40% SC								
Pigeon Pea	At Flowering initiation stage		30		75		500		48
Prohexadione	-Ca 10% WG								
Apple	Two split applications: 1 st application: at 3-5 leaves/ shoot 2 nd application 4 weeks after application		12 15		50 gm 100 lite 60 gm 100 lite	er per	2500 2500	94	4
Sodium Para -	-Nitrophenolate 0.3% SL								
Cotton	Flower bud initiated stage an fruit set stage	d	0	.5%	5 ml		800	1	6
Tomato	Flowering and fruit stages		0	.5%	4 ml		200	7	
Triacontanol	0.05% EC								
Cotton	To increase the yield		0	.125 gm	0.25ltr		400-500		
	Three sprays at 45, 65 and 85 days after planting	5							
Rice	Three sprays at 25, 45 and 65 days after transplanting	5	0	.125 gm	0.25ltr		400-500		

Chilli	Three sprays at 25, 45 and 65 days after planting	0.125 gm	0.25ltr	400-500	
	augs alter planting				
Tomato	Three sprays at 25, 45 and 65 days after planting	0.125gm	0.25 ltr	400-500	
Groundnut	Three sprays at 25, 45 and 65 days after planting	0.125 gm	0.25 ltr	400-500	-
Potato	Two sprays at 30 and 45 days after planting	0.250 gm	0.50 ltr	500-600	-
Triacontanol	0.05% w/w min. GR				
Cotton	To increase the yield	12.5 gm	25 kg.	-	-
	Broadcast & mix the desired quantity of granules in soil 2-3 days before sowing.				
Rice	Broadcast & mix the desired quantity of granules in soil 2-3 days before transplanting.	12.5 gm	25 kg.	-	-
Chilli	Broadcast & mix the desired quantity of granules in soil 2-3 days before sowing.	12.5 gm	25 kg.	-	-
Tomato	Broadcast & mix the desired quantity of granules in soil 2-3 days before sowing.	12.5 gm	25 kg.	-	-
Groundnut	Broadcast & mix the desired quantity of granules in soil 2-3 days before sowing.	12.5 gm	25 kg.	-	-
Triacontanol	0.1% EW				
Cotton	To increase the yield	0.25 g	0.25 ltr.	400-500	-
	Three sprays at 45, 65 and 85 days after sowing				
Rice	Three sprays at 25, 45 and 65 days after transplanting	0.25 g	0.25 ltr.	400-500	-
Chilli	Three sprays at 25, 45 and 65 days after transplanting	0.25 g	0.25 ltr.	400-500	-

Tomato	Three sprays at 25, 45 and 65 days after transplanting	0.25 g	0.25 ltr.	400-500	-
Groundnut	Three sprays at 25, 45 and 65 days after sowing	0.25 g	0.25 ltr.	400-500	-
Tea	Three sprays: 1 st spray on mature plants, 2 nd spray one month after 1 st spray, 3 rd spray one month after 2 nd spray	0.25 g	0.25 ltr	400-500	-
Cyclanilide 2.10% w/w +Mepiquat Chloride 8.40% w/w SC					
Cotton	First spray should be applied at square formation stage or after 45-55 days of sowing. 2 nd and 3 rd spray should be applied at an interval of 15 days.	4.40 +17.60 to 4.95 +19.80 gm	200 - 225	500	21
Gibberellic acid	1.8% + 6-Benzyladenine 1.8% L				
Apple	To increase the yield through enhancement of fruit size and weight, to improve the shape and development of prominent calyx lobes (typiness). To increase lateral bud break and shoot growth (branching) & improving branch angle of nursery stock young apple trees	30-60 ppm	840-1680 ppm	1000	-
