Standard Operating Procedures (SOP) on aerial spraying using aircraft/helicopter/drone for control of Desert Locust

Government of India
Ministry of Agriculture and Farmers Welfare
Department of Agriculture, Cooperation and Farmers Welfare
Directorate of Plant Protection, Quarantine & Storage
N.H.IV., Faridabad-121001 (ppa@nic.in)
CONTENTS

Endorsement .. 3
Standard Operating Procedures (SOP) for Desert Locust Control ... 4
Objectives .. 4

1. Control Process .. 4
 Preparations before control operations .. 4
 Before aerial control operations .. 5
 During aerial control operations .. 5
 After aerial control operations ... 6

2. Ground support team and field equipment .. 6
 Support team ... 6
 Equipment ... 6

3. Principles of ULV application .. 7

4. ULV aerial spray system ... 7

5. Calibrating ULV spray system .. 8
 What is calibration? ... 8
 When do you calibrate spray equipment? .. 8
 How to calibrate a sprayer ... 8
 How to measure the flow rate of aerial spray systems ... 9
 Electronic pesticide pumps (collection technique) ... 9
 Windmill-driven pesticide pumps (loss technique while in flight) ... 10
 How to estimate work rate ... 10
 Typical track spacing in aerial control .. 11

6. Recording and reporting .. 11

7. Cleaning, storing and disposal .. 11
 Aerial spray system ... 11
 Insecticide storage ... 12
 Disposal of empty insecticide containers .. 12

8. Coronavirus: Safety tips ... 13

Annexure-I (FAO Spray Monitoring Form) ... 14
Endorsement

This Standard Operating Procedure (SOP) for Aerial Spraying by aircraft/helicopter/drone is prepared by the Directorate of Plant Protection, Quarantine & Storage, Faridabad in line with FAO SOP on aerial spraying and considering requirement envisaged under the relevant provisions (Rule 43) of the Insecticides Act 1968 and Insecticides Rules 1971 for undertaking safe and effective control of desert locust by aerial spraying using aircraft/helicopter/drone. This SOP will render guidance to the locust officer/ pilot/operators while undertaking aerial control operations. This SOP is duly approved on 18th May, 2020.

(Rajesh Malik)
Plant Protection Adviser
Directorate of Plant Protection, Quarantine & Storage,
NH-IV, Faridabad-121001 India
Standard Operating Procedures (SOP) for Desert Locust Control

Objective
The objective of the Standard Operating Procedures (SOP) for Desert Locust Aerial Control is to give concise instructions for effective and safe control operations against the Desert Locust using aircraft/helicopter/drone. Considering the legal requirements envisaged under the relevant provisions of the Insecticides Act 1968 and Insecticides Rules 1971 for undertaking safe and effective control of desert locust by aerial spraying using aircraft/helicopter/drone these instructions required to be followed. These instructions are intended for use by the field staffs who are involved in Desert Locust aerial operations (including Locust Officers and pilots/ operators) to help them avoid dangerous, ineffective or wasteful operations. They are based on the FAO Desert Locust Guidelines for aerial spraying where more detailed information and references are available.

The instructions focus on:
- Aerial survey operations
- Aerial spraying of insecticides
- Aerial spray equipment’s
- Techniques for safe and efficient operations

1. Control process
A series of steps need to be followed before, during and after aerial survey and control operations.

Aircraft/Helicopter are best for spraying large areas (5000+ ha) the smallest area an aircraft can spray is 100 ha and inaccessible through ground vehicles. Use of drone is useful for spot applications of pesticides such as long trees and in the area where vehicle entry is inaccessible such as acacia plantation, sand dune etc.

PREPARATIONS before control operations
- Determine what type and number of aircraft/helicopter/drone are required for control operations
- Select competent control teams and provide them with training or refresher training. The pilots/Operator shall undergo specialization training including clinical effects of the insecticides by the experienced locust officer as well as medical toxicologist authorized by the Plant Protection Adviser.
- Check and service of aircraft/helicopter/drone
• Check and test the spray system on the aircraft/helicopter/drone, that commonly needed spare parts are available and aircraft/helicopter/drone are equipped with a GPS-based track guidance system

• Distribute the required quantity and type of insecticides, protective clothing, aviation fuel and pumps to the likely spray sites

• Make sure that aircraft/helicopter/drone is available in the country and can be contracted by the MOA&FW for control operations. Check that airstrips have been maintained

BEFORE aerial control operations

• Determine if aerial control operations are required.

• If so, choose appropriate aircraft/helicopter/drone types, insecticide and spray coverage pattern (barrier or full cover).

• Calibrate the spray system on the aircraft/helicopter/drone in order to assure the correct amount of insecticide is applied in the right way and in the right place.

• All aerial operations shall be notified to the public not less than twenty-four hours in advance through competent authorities

• Animals and persons not connected with the operations shall be prevented from entering such areas for a specific period

• Ensure that local inhabitants are informed about the date, time and location of control operations, so that they can move their livestock, beehives and families to safety.

• Find the wind direction in order to establish a spray direction at right angles to it and demarcate the infested area.

• Make sure that temperature, wind and rainfall conditions are suitable and safe for the aerial control operations.

• Marking of the area shall be the responsibility of the operators

• Washing, decontamination and first-aid facilities shall be provided by the operators

DURING aerial control operations

• Make sure that all staff who are handling or applying insecticide use full protective clothing

• The operators shall use only approved insecticides and their formulations at approved concentration and height

• All other non-spraying personnel, vehicles and equipment are away from the target area to avoid contamination by the sprayed insecticide
• Start at the downwind edge of the target area and spray cross wind (at right angles to the wind direction), moving upwind after each spray pass, making sure to measure the correct track spacing using DGPS, flagmen or other means
• Make an extra spray pass upwind of the target area to prevent under-dosing at the upwind edge
• Stop spraying if the wind drops (less than 1 m/s) or becomes very strong (more than 10 m/s) and wait for the right conditions
• Stop spraying if it starts to rain or seems likely to rain soon
• Stop spraying if the wind direction changes by more than 45 degrees, adjust your new spray line and spray the remaining area

AFTER aerial control operations
• Monitor and record all relevant details on the FAO Spray Monitoring Form (Annexure-I).
• Empty any insecticide remaining in the aircraft/helicopter/drone spray tank back into the original insecticide container. Clean and maintain the spray system on the aircraft/helicopter/drone, and store the insecticide and the empty containers in safe places.
• Wash yourself and the protective clothing as soon as possible.

2. Ground support team and field equipment

Support Team: one locust officer, two drivers and two vehicles, plus support staff such as assistants and skilled laborers.

Equipment: to be available in each team
• Hand-held GPS
• Maps, compass
• FAO forms
• Clipboard, paper and pen
• Anemometer
• Hygrometer
• Flags
• Oil sensitive paper to sample ULV droplets
• Bucket and plastic measuring cylinder or jug
• VHF or UHF walkie-talkies for short range ground-to-air communication
• Vibrating tachometer
• Stop watch
• Hand lens (x10)
• Sweep net
• Plastic bags
• Tool kit, first aid kit
• HF radio
• Cages for mortality assessment
• Water and soap for washing
• Sets of protective clothing for all staff handling insecticides

(1) extra batteries, cigarette lighter adapter, remote antenna
(2) Survey & Control Forms and Spray Monitoring Forms

3. Principles of ULV application
Ultra low volume (ULV) spraying uses small amounts of concentrated insecticide. In locust control, about 1.0 litre/hectare is applied. The insecticide is not mixed with water or solvent. It is oil-based to prevent evaporation and is usually applied ready to spray. Droplets of spray are carried by the wind. In full coverage treatments, the insecticide is sprayed as overlapping swaths onto the control target so that a uniform deposit is achieved and the locusts receive enough insecticide. Remember:

• Do not spray during the hottest part of the day (1100-1600 hr) when convection may occur and carry the spray up into the sky instead of down onto the locusts
• Do not spray at low wind speeds less than 1 m/s
• Do not spray at high wind speeds more than 10 m/s

4. ULV aerial spray system
A good ULV sprayer uses rotary atomizers (spinning discs or rotating cages) to produce droplets in a small size range (50-100 \(\mu m \)). If droplets are too large or too small, control will be poor and insecticide wasted. For aerial spraying, use the following:

• Volume median diameter (VMD): 75-100 \(\mu m \)
• Blade angle: 35° (AU4000), 40° (AU5000) \((1) \)
• Emission height: 5-10 meters, depending on wind \((2) \)
• Aircraft/helicopter speed: 140-160 km/h in consultation with pilot
 (1) at air speed of 160 km/h, 7000 rpm (AU4000), 8000 rpm (AU5000)
 (2) higher for milling and flying swarms and, possibly, barrier control
• Drone height and speed should coincide with effective and safe locust control operation.

5. Calibrating ULV spray system
The aerial spray system on the aircraft/helicopter/drone must be calibrated before the actual spraying takes place.

What is calibration?
The aerial spray equipment needs to be adjusted in order to apply the recommended amount of insecticide, in the right size spray droplets, to the right place.
Before setting flow rates for the first time, consult the manufacturer’s manual to get a rough estimate of the required flow rate. On aircraft/helicopter/drone, flow rate is checked by recording the time spent spraying and the amount of insecticide used. Accordingly, the flow rate should be measured and reset if necessary.

Calibration should always be carried out by using the actual insecticide that will be applied

When do you calibrate spray equipment?
- When the aerial spray equipment is new
- When the insecticide formulation or concentration is changed
- When the volume application rate (VAR), track spacing or forward speed is changed
- Before the beginning of the campaign and at weekly intervals during it

How to calibrate a sprayer
Step 1. Find the recommended dose of the insecticide (g a.i./ha), from the drum label, FAO Guidelines, etc. If it is given as litres/hectare, go to step 3.

Step 2. Calculate the required Volume Application Rate (VAR).

\[
\text{VAR (l/ha)} = \frac{\text{Recommended dose (g a.i./ha)}}{\text{Formulation concentration (g/l)}}
\]

Example: If the recommended dose for chlorpyrifos is 250 g a.i./ha and its concentration is 450 g/l what is the VAR?

\[
\text{VAR (l/ha)} = \frac{250}{450} = 0.55 \text{ l/ha}
\]
If the formulation concentration expressed as a percentage of weight to volume (\% w/v) convert the concentration to g a.i/l by using the formula:
\[
\text{Concentration (g a.i./l)} = \frac{\text{Concentration given} \times 1000}{100}
\]
Example: If the concentration given for Malathion is 96\%, then this must be converted by using the formula:
\[
\text{Concentration in g a.i./l} = \frac{96 \times 1000}{100} = 960 \text{ g a.i/l}
\]
In short, multiply the given percentage concentration by 10.

Step 3. Calculate the Flow Rate (FR).
\[
\text{FR (l/min)} = \frac{\text{VAR (l/ha)} \times \text{speed (km/h)} \times \text{track spacing (m)}}{600}
\]
Example: What flow rate is required from an aircraft flying at 140 km/h using a 100m track spacing in order to apply 960 g a.i./ha of Malathion 96\% ULV?
\[
\text{FR (l/min)} = \frac{1 \text{ (l/ha)} \times 140 \text{ (km/h)} \times 1000 \text{ (m)}}{600} = 23.33 \text{ l/min}
\]
It is important to remember that if one of the parameters (flow rate, track spacing or forward speed) is altered, then one or more of the others have to be changed in order to maintain the correct Volume Application Rate and Dose.

- If flow rate increases \quad \text{VAR increases (and vice versa)}
- If track spacing increases \quad \text{VAR decreases (and vice versa)}
- If forward speed increases \quad \text{VAR decreases (and vice versa)}

Example: If the wind becomes stronger, it might be possible to increase the track spacing to allow a faster work rate. In order to maintain the correct VAR and dose, either the spray forward speed must be decreased or the flow rate must be increased. In order to achieve a faster work rate from the wider track spacing, the flow rate must be increased, rather than the forward speed being decreased.

How to measure the flow rate of aerial spray systems

Electronic pesticide pumps (collection technique):

Step 1. Calculate the required flow rate for each atomizer.

Step 2. Make sure that the aircraft engine is running so that the correct voltage is being supplied to the pump.

Step 3. Set the approximate flow rate based on tables in the user’s handbook.
Step 4. Position a bucket under each atomizer. To prevent insecticide from squirting outside the collecting bucket, fasten plastic bags with a hole in the bottom over the atomizers.

Step 5. Put about 50 litres of insecticide into the spray tank in order to prime the pipework. Ensure that the pipes are full by pumping insecticide through the atomizers until air bubbles disappear (the pipework in an aircraft spray system can contain up to 30 litres of liquid). Return the collected insecticide to the sprayer tank.

Step 6. Put the buckets back under each atomizer, turn on the pump (but not the atomizers) and measure the volume of insecticide collected using a measuring cylinder.

Step 7. Adjust the flow rate to bring it closer to the required rate calculated previously. Repeat step 6 until this rate has been achieved to within about 5% error.

Step 8. When the required flow rate has been achieved, recheck it two more times to ensure that it is correct.

Windmill-driven pesticide pumps (loss technique while in flight):

Step 1. Calculate the desired flow rate (see page 12).

Step 2. Set the approximate flow rate based on tables in the user’s handbook.

Step 3. Position a bucket under each atomizer. To prevent insecticide squirting outside the collecting bucket, fasten a plastic bag with a hole in the bottom over each atomizer. Put about 50 litres of insecticide into the spray tank in order to prime the pipework. Ensure that the pipes are full by pumping insecticide through the atomizers until air bubbles disappear (the pipework in an aircraft spray system can contain up to 30 litres of liquid). Return collected insecticide to the sprayer tank.

Step 4. Fill the spray tank to a known level with insecticide (either complete full or to a marked level).

Step 5. Take off and spray over the target area using normal spraying techniques for a specific number of minutes (M).

Step 6. After landing, use a measuring cylinder to measure the amount of insecticide required to refill the spray tank to its original level. This is the number of litres emitted (E).

Step 7. Calculate: Flow rate (l/min) = \(\frac{E(l)}{M \text{ (mins)}} \)

Step 8. Adjust the flow rate to bring it closer to the required rate calculated previously. Repeat steps 4-7 until this rate has been achieved to within about 5% error.

Step 9. When the required flow rate has been achieved, recheck it two more times to ensure that it is correct.

How to estimate work rate

A rough estimate of the work rate can be calculated from the formula:

\[
\text{Work rate (ha/h)} = \frac{\text{Forward speed (km/h)} \times \text{track spacing (m)}}{10}
\]
Note: this formula does not take into account the time required for turning at the end of each spray pass, which can be considerable for aircraft.

Typical track spacing in aerial control
A track spacing of 100 m is generally used when spraying hopper bands, blocks of bands or settled swarms, milling swarms at roost and stratiform swarms using aircraft/helicopter.

6. Recording and reporting
Monitoring is very important in order to document the activities and to allow later analysis of the successes and failures of any campaigns. Most of the information concerning the control operations and their efficacy and the efficiency of the campaign are covered in the *FAO Spray Monitoring Form* (Annexure-I).

The form should be completed in order to include details on the location, rainfall, ecology and locusts. Duly filled forms should be returned to the National Locust Unit headquarters as soon as possible for review. Any problems (lack of protective clothing, overdosing, poor efficacy, non-target effects, etc.) can be noted on the form so they can be addressed later.

General flight report and job details produced by the DGPS, track guidance system and any flow control systems on board the aircraft/helicopter should be submitted to the Locust Control Unit Headquarters. Field staff recording the details of each control operation should use these forms

7. Cleaning, storing and disposal
Spray equipment should always be clean and ready to use. Properly dispose empty containers.

Always wear protective clothing while handling insecticides

Aerial spray system
- Drain unused insecticide back into the original containers
- To clean the sprayer, put some kerosene or diesel into it and spray it over the target area or waste ground, away from water bodies or supplies used by people or livestock; never dump this liquid in one place such as a pit
- Carry out any repair or required maintenance
• Wash the outside of the spray system with a cloth soaked in diesel or kerosene

• Cover the spray system (atomizer, variable restrictor unit and blades) with suitable protective covering to avoid any contamination (e.g. dust)

Insecticide storage

• Keep insecticide in original containers in a cool locked store to reduce deterioration caused by high temperatures

• Use older insecticides first (first-in-first-out system)

Disposal of empty insecticide containers

• Follow relevant provisions envisaged under the Insecticides Act 1968 and Rule 1971

• Clean empty insecticide containers three times inside and out with diesel or kerosene

• Collect the small volume of washings and dispose of by adding them to the insecticide in sprayer tanks during the next control operations or, if it is the end of the season, pour them into insecticide containers that are not full

• Never use empty containers for any other purpose than insecticides

• If they are to be recycled, they should be transported back to manufacturer

• Containers for disposal should be punctured, crushed and sent back to relevant authorities for appropriate disposal
Coronavirus: Safety Tips

Follow these steps to help keep you and others safe:

Download Arogya Setu App in your Mobile Phone

Stay home if you can and avoid any non-essential travel. Avoid social gatherings of more than 5 people.

Practice social distancing by keeping at least 6 feet — about two arm lengths — away from others if you must go out in public. Stay connected with loved ones through video and phone calls, texts and social media. Avoid close contact with people who are sick.

Wash your hands often with soap and water for at least 20 seconds, especially after being in a public place, or after blowing your nose, coughing or sneezing. If soap and water are not readily available, use a hand sanitizer with at least 60% alcohol.

Avoid touching your eyes, nose and mouth with unwashed hands.

Clean and disinfect household surfaces daily and high-touch surfaces frequently throughout the day. High-touch surfaces include phones, remote controls, counters, tabletops, doorknobs, bathroom fixtures, toilets, keyboards, tablets and bedside tables.

Cover your coughs and sneezes. Use a tissue to cover your nose and mouth and throw used tissues in a lined trash can. If a tissue isn’t available, cough or sneeze into your elbow — not your hands. Wash your hands immediately.
FAO Spray Monitoring Form

Annexure-I

Attach this form to the DL Survey and Control Form and submit both to the National Locust Unit in your country whenever control operations are carried out. (Indicate appropriate information as required)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>name (from DL Survey Form)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>vegetation type</td>
<td>GBTC</td>
<td>GBTC</td>
<td>GBTC</td>
<td>GBTC</td>
<td>GBTC</td>
</tr>
<tr>
<td>2-2</td>
<td>height (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>crop names and damage (%)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Insecticide Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td>trade name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>concentration (g a.i. / l or %)</td>
<td>EUD</td>
<td>EUD</td>
<td>EUD</td>
<td>EUD</td>
<td>EUD</td>
</tr>
<tr>
<td>3-3</td>
<td>formulation (EC, ULV, Dust)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>expiry date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>is insecticide mixed with water or solvent?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3-6</td>
<td>if yes, what solvent and mixing ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td>time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>relative humidity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-4</td>
<td>wind speed (m/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>wind direction (degrees from N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>spray direction (degrees from N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>sprayer type</td>
<td>RAER</td>
<td>RAER</td>
<td>RAER</td>
<td>RAER</td>
<td>RAER</td>
</tr>
<tr>
<td>5-2</td>
<td>sprayer operator</td>
<td>PDLP</td>
<td>PDLP</td>
<td>PDLP</td>
<td>PDLP</td>
<td>PDLP</td>
</tr>
<tr>
<td>5-3</td>
<td>sprayer manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>sprayer model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td>sprayer platform (Aerial, Vehicle, Handheld)</td>
<td>A V H</td>
</tr>
<tr>
<td>5-6</td>
<td>date of last calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>atomizer height above ground (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-8</td>
<td>ROTARY SPRAYERS: speed setting (blade angle, pulley setting, no. batteries)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-9</td>
<td>speed of atomizer (rpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>flow rate setting (which nozzle or restrictor used)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-11</td>
<td>flow rate/atomizer (l/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-12</td>
<td>number of atomizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-13</td>
<td>track spacing (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-14</td>
<td>BARRIERS ONLY: width and spacing (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-15</td>
<td>forward speed (km/h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-16</td>
<td>AERIAL SPRAYING: support supplied</td>
<td>GP = ground party available</td>
<td>RC = radio communication with aircraft</td>
<td>TG = DGPS track guidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-17</td>
<td>ground marking</td>
<td>G F</td>
<td>M</td>
<td>G F</td>
<td>M</td>
<td>G F</td>
</tr>
<tr>
<td>Control Efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>locust mortality (% dead)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-2</td>
<td>time after treatment (hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-3</td>
<td>method of mortality estimation (Quadrats, Target size, Visual, Cages, Other)</td>
<td>Q T V</td>
</tr>
<tr>
<td>Safety and Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-3</td>
<td>was soap and water available?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>7-4</td>
<td>who was informed of spraying? (Farmer, Nomad, Villager, Official, Beekeeper)</td>
<td>F N V</td>
</tr>
<tr>
<td>7-5</td>
<td>effect on non-target organisms</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>7-6</td>
<td>details of anyone who felt unwell or if other problems were encountered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>